The Influence of Mathematics Teachers’ Knowledge in Technology, Pedagogy and Content (TPACK) on Their Teaching Effectiveness in Saudi Public Schools

Khaled Abdullah Alshehri, Ph.D., The University of Kansas, 2012.


Many researchers including (Hill et al., 2008; McCray & Chen, 2012) have found that teachers' understanding of the mathematics content knowledge and their expertise in teaching methods "pedagogy" are largely responsible for how effective they are as teachers. More recent research (Lyublinskaya & Tournaki, 2012; Polly, 2011) suggests that teachers' ability to integrate technology into their teaching is also critical to their mathematics teaching effectiveness. This study investigated the validity of these assumptions for 7-12 grade mathematics teachers in Saudi Arabia and how their expertise in Technological Pedagogical And Content Knowledge (TPACK) influences their teaching effectiveness.

The central question for grade 7-12 Saudi Arabian mathematics teachers is: Does expertise in technology integration, pedagogy and content relate to teaching effectiveness? The TPACK expertise of 347 secondary male mathematics teachers in Riyadh public schools was measured by self-evaluation questionnaires. Principals from 109 schools rated their teachers by using a 14 item "Teacher Effectiveness" survey. Descriptive statistics, bivariate correlations, ANOVA, Paired-Samples t-test and MANOVA were used to evaluate the relationship between the teachers' TPACK knowledge and teaching effectiveness.

Results showed that teachers evaluated their TPACK at a high level. On the TPACK 1-5 Likert scale survey (5 = highly competent), the teachers rated their general mathematics content knowledge (CK) at M=3.7 (SD=.67), their general pedagogy knowledge (PK) at M=4.1 (SD =.55), their general technology knowledge (TK) at M=3.6 (SD=.70), their pedagogical knowledge within mathematics content (PCK) at M=4 (SD =.60), their technological knowledge within mathematics content (TCK) at M=3.7 (SD=.69), their technological knowledge within pedagogical knowledge (TPK) at M=3.6 (SD=.74), their technological pedagogical and content knowledge at M=3.7 (SD=.71), and their cumulative knowledge of technology, pedagogy and content at M=3.8 (SD=.52). The teachers also rated their professional preparation to integrate technology. They reported that their university courses prepared them to integrate digital technologies (M=3.51, SD=.88) better than professional development workshop and training (M=3.07, SD=1.7); t(346)= 8.17, p<.01. Principals rated the overall effectiveness of their teachers at M=3.11 (SD=.59) on the 14 item scale and their usage of technology at M=2.84 (SD=1.06).

Correlations between mathematics teachers' 7 TPACK self-efficacy and the principals’ rating of teacher effectiveness were not significantly different. Negative correlations were found between principals’ ratings of teaching effectiveness and the teachers’ evaluation of their professional preparedness in university courses (r=-.125, p<.05) and professional development training programs (r=-.129, p<.05). This discrepancy may point to differences between the way these principals and the higher education institutions value teacher preparation curriculum. Further studies may consider comparing teachers' TPACK self-efficacy to student achievement.